sexta-feira, 9 de março de 2012

AULAS E PROVAS.


   DATAS PROVAS, TRABALHOS E LABORATÓRIO MÊS DE MARÇO.

 DIA 14 LABORATÓRIO BIOQUÍMICA (REITORIA).

 DIA 15 LABORATÓRIO NA PRIMEIRA AULA.

 DIA 16 LABORATÓRIO BIOLOGIA I.

 DIA 19 ENTREGA DO ARTIGO DE METODOLOGIA.

 DIA 26 PROVA DE POLITICA.

 DIA 28 PROVA DE BIOQUÍMICA.

 DIA 30 LABORATÓRIO BIOLOGIA I.


quinta-feira, 8 de março de 2012

Aula de biologia: mitose e meiose


Vídeo aula sobre Citologia - a Célula - Parte 1/2


PREPARO DE LÂMINA


MICROSCÓPIO.


O FUNCIONAMENTO DO MICROSCÓPIO ÓPTICO
INTRODUÇÃO
No estudo das ciências em geral, o microscópio óptico tem sido particularmente importante, uma vez que permite observações que estão fora do alcance da visibilidade direta do olho humano (olho nu). A estrutura pormenorizada dos seres vivos ou inertes e essa infinidade de objetos tão pequenos que já se conhecem, estariam ainda no vasto campo do desconhecimento humano se não existisse o microscópio.

Figura 01 – Modelos de Microscópios 
BREVE HISTÓRICO DO MICROSCÓPIO
Nos finais do século XVI, depois de quatro séculos de aperfeiçoar e buscar novas utilizações às lentes, foi criada a lupa (uma lente com suporte de mão) por Galileu que, usando-a, efetuou as primeiras observações de objetos e seres. No século XVI, a construção e o aperfeiçoamento do microscópio, particularmente do sistema de lentes, expandiu-se, quando Antonie Van Leeuwenhoek e Zacharias Jansen, fabricantes de óculos, desenvolveram os primeiros microscópios simples (uma única lente com suporte de mesa) e compostos (duas lentes com suporte de mesa), respectivamente. Esses aparelhos utilizavam a luz refletida pelo objeto fortemente iluminado. Vários modelos foram a seguir construídos, entre os quais alguns de valor histórico, como por exemplo, o microscópio de Robert Hooke, o descobridor da célula.
ELEMENTOS ESTRUTURAIS DO MICROSCÓPIO ÓPTICO COMPOSTO 
Geralmente, o microscópio óptico composto é constituído por duas partes – uma parte mecânica e uma parte óptica. Cada parte engloba uma série de componentes constituintes do microscópio.
A parte mecânica (suporte de mesa) serve para dar estabilidade e sustentar a parte óptica, sendo constituída por:
— Pé ou Base: estrutura que suporta o microscópio, propiciando-lhe estabilidade.
— Coluna ou Braço: peça afixada à base, na qual estão aplicadas as demais partes constituintes do microscópio.
— Canhão: cilindro responsável por sustentar as lentes, tendo na parte superior a lente ocular e na parte inferior (revólver) a lente objetiva.
— Platina: peça de formato quadrado ou retangular, localizada paralela à base, onde se coloca o material a ser observado. No centro da platina existe um orifício circular que possibilita a passagem dos raios luminosos concentrados pelo condensador.


Figura 02 – Estrutura do Microscópio
— Parafuso Macrométrico: estrutura em forma de engrenagem que suporta o tubo e permite o deslocamento da platina, permitindo assim a focalização da imagem.
— Parafuso Micrométrico: imprime ao tubo e/ou a platina movimentos de amplitude reduzida, possibilitando a complementação do processo de focalização da imagem. Essa estrutura permite detalhamento de imagens com a exploração profunda do campo do microscópio.
— Revólver: estrutura em formato de disco, adaptado à região inferior do tubo, que consegue suportar de duas até quatro objetivas de diferentes ampliações. Movimentos de rotação possibilitam a cômoda troca de objetivas.

A parte óptica é constituída pelos seguintes elementos:
— Sistemas de Lentes Oculares e Objetivas: Conjunto de lentes que permite a ampliação do objeto. A ampliação do microscópio pode ser conseguida pela relação abaixo:

— Fonte Luminosa: elemento fundamental da definição da nitidez da imagem, a fonte luminosa do microscópio pode ser de origem artificial (lâmpada) ou de origem natural (espelho refletor).
— Condensador: elemento responsável pela distribuição regular da luz refletida pelo espelho.
— Diafragma: elemento responsável pela regulagem da intensidade luminosa no campo visual do microscópio.


Figura 03 – Fontes Luminosas do Microscópio


Figura 04 – Imagem formada no Microscópio Composto
CARACTERÍSTICAS DA IMAGEM DO MICROSCÓPIO ÓPTICO COMPOSTO 
O objeto a ser observado deve ser colocado muito perto do foco objeto do sistema da lente objetiva, para que se forme uma imagem real, invertida, de maiores dimensões, que vai servir de objeto em relação à ocular. Esta, dá uma imagem virtual e invertida em relação ao objeto a ser observado, que deve formar-se entre o ponto próximo e o ponto remoto do olho do observador. No microscópio óptico composto, a ampliação e o campo de visualização são inversamente proporcionais, ou seja, quanto maior for a ampliação, menor a área da preparação observada.
A profundidade de campo do microscópio na formação da imagem é muito pequena, o que implica que os objetos examinados ao microscópio devem ser de pequena espessura. A operação de focagem é tanto mais delicada quanto menor for a distância focal do sistema, ou seja, quanto maior for a ampliação. Devido a esse fato, é importante que, durante a observação, se proceda a uma manobra constante do parafuso micrométrico de modo a poder-se visualizar nitidamente detalhes nos diferentes planos.





EXPERIÊNCIA PRÁTICA COM LENTES ESFÉRICAS CONVERGENTES (Lupas)
01. Objetivos
— Demonstrar, utilizando lentes esféricas convergentes, a possibilidade de se concentrar a luz solar e aumentar a temperatura de placas de isopor de diferentes colorações.
— Demonstrar que placas de coloração escura absorvem uma maior quantidade de radiação, entrando em combustão em um tempo menor que placas de coloração clara.

02. Material
— Uma lente convergente (lupa)
— Seis placas de isopor quadradas de dimensões (10 cm x 10 cm) de coloração branca, amarela, verde, azul, vermelha e preta

03. Procedimentos
— Em local ensolarado, colocar as quatro placas sobre uma mesma superfície plana.
— Ajustar para que a lupa fique a uma distância de 4 cm de cada uma das placas, com raios solares incidindo sobre a lente.
— Cronometrar o tempo entre o ajuste e o início do processo de combustão do isopor (fumaça).

04. Conclusão
Estabelecer uma ordem crescente de placas que iniciaram a combustão e concluir quais cores absorvem mais a energia radiante emitida pelos raios solares.

terça-feira, 6 de março de 2012

URGENTE PROVA DE BIOQUÍMICA

A PROFESSORA DE BIOQUIMICA MINISTRARA AULA PRÁTICA  NO LABORATÓRIO DIA 14 DE MARÇO.

PROVA MARCADA PARA O DIA 28 DE MARÇO DE 2012.

NOTICIAS E INFORMAÇÕES



Notícias


O Banco Metropolitano de Empregos & Estágios (BME&E), em parceria com o Núcleo Brasileiro de Estágios (NUBE) e com o Centro de Integração Empresa-Escola (CIEE), realizará uma ação de cadastramento dos alunos do Complexo Educacional FMU, dentro de seus Campi, para vagas de estágios.

Essa é uma grande oportunidade de os alunos da FMU conseguirem ingressar no mercado de trabalho.
Os atendimentos acontecerão das 9h às 12h e das 19h às 21h. Confira abaixo o cronograma e participe dessa exclusiva ação de cadastramento, que será realizada na Instituição:
CIEE
DatasCampusPeríodos
27 de fevereiroLiberdade – Prédio 16 (rampa)Matutino e noturno
28 de fevereiroLiberdade – Casa Metropolitana do Direito -
Saguão de entrada
Matutino e noturno
   
29 de fevereiroVila Mariana IMatutino e noturno
1º de marçoLiberdade – Prédio Brigadeiro
No saguão de entrada
Noturno
05 de marçoMorumbiNoturno
NUBE
DatasCampusPeríodos
12 e 13 de marçoLiberdade – Prédio 16 (rampa)Matutino e noturno
14 de marçoLiberdade – Prédio Brigadeiro
No saguão de entrada
Noturno
15 de marçoLiberdade – Casa Metropolitana do Direito -
Saguão de entrada

INFORMAÇÕES DO PROFESSOR ALLYSSON COELHO.

NO FACEBOOK DO PROFESSOR TEMOS VIDEOS RELACIONADOS AO CONHECIMENTO CELULAR, INTERESSADOS FAVOR ASSISTIR.

FACE- ALLYSSON COELHO SAMPAIO

PROFESSOR RECOMENDOU LIVRO COMBO NA PROMOÇÃO NA LIVRARIA DA FACULDADE. LIVROS RELACIONADOS A HISTOLOGIA 3 LIVROS POR 39 REAIS.

PROFESSOR INDICOU UM LIVRO, INTERESSADOS VERIFICAR NA BIBLIOTECA E TIRAR COPIA DO TRECHO INDICADO.

LIVRO: FUNDAMENTOS DA BIOLOGIA CELULAR
AUTOR: ALBERTS.
COMO AS CÉLULAS CONTÉM A ENERGIA DOS ALIMENTOS.
CAPITULO 3 OU 14, FAVOR VERIFICAR.


COPIAS E XEROX DOS PROFESSORES.

NA RUA TAGUÁ, COPIADORA ATUAL, TEMOS ALGUMAS APOSTILAS E TEXTOS DE ALGUNS PROFESSORES DO CURSO DE BIOMEDICINA MANHÃ.

OS INTERESSADOS DEVEM SE INFORMAR EM SALA E SE DIRIGIR ATÉ A COPIADORA PARA SOLICITAR O MATERIAL.

TRABALHOS E PESQUISAS PROFESSORA CAROL / METODOLOGIA ARTIGOS CIENTÍFICOS.

NA AULA DE SEGUNDA FEIRA DIA 05/03/2012 A PROFESSORA PEDIU PARA QUE A SALA SE DIVIDIR SE EM GRUPOS DE 4 OU 6 ALUNOS, PARA DARMOS ANDAMENTO AO PROJETO DE INICIAÇÃO CIENTIFICA COM ARTIGOS, RELACIONADO A METODOLOGIA SEGUINDO OS CONCEITOS APLICADOS EM AULA.

CADA GRUPO ESCOLHEU UM TEMA E DEVE PESQUISAR SOBRE O MESMO, AS PESQUISAS PODEM SER FEITAS ATRAVÉS DO SITE SCIELO E BIREME, OU PODE SER UTILIZADO TRECHOS DE LIVROS EMBASADOS NOS TEMAS ESCOLHIDOS E RESPEITANDO AS NORMAS DA METODOLOGIA DE INICIAÇÃO, NOME DO AUTOR, LIVRO DATAS ENTRE OUTROS.

OBS: AULA DE SEGUNDA SERA RELACIONADA A UTILIZAÇÃO DOS SITE BIREME E SCILE, (ARTIGOS CIENTÍFICOS E PESQUISAS).

DISCIPLINAS DO CURSO.


Disciplina






ANATOMIA HUMANA I                     QUINTA FEIRA (LABORATÓRIO).




CITOLOGIA,HISTOLOGIA E EMBRIOLOGIA                 TERÇA FEIRA.




QUIMICA E BIOQUIMICA I            QUARTA FEIRA.




BIOLOGIA GERAL I                                     SEXTA FEIRA.




METODOLOGIA DA PESQUISA CIENTIFICA                   SEGUNDA FEIRA.




POLITICAS DE SAUDE NO BRASIL                             SEGUNDA FEIRA.
OBS: EM BREVE ALGUMAS TEREMOS OUTRAS AULAS NO LABORATÓRIO.

BIBLIOTECA FMU

Avisos e comunicados

Senhores usuários,
Informamos que o horário de funcionamento das Bibliotecas é de segunda a sexta-feira, das 8h às 22h, e que a Biblioteca Central abre aos sábados das 8h às 13h.
Novos usuários podem apresentar documento oficial com foto, número de RA ou outro comprovante de vínculo com a Instituição e cadastrar sua senha nos balcões de atendimento das Bibliotecas.

PROVA DA PROFESSORA SELMA DIA 09/03/2012


PROVA DA PROFESSORA SELMA DIA 09/03/2012

Biologia I
                           ESTRUTURA DA CELULA  EUCARIONTE
Descrição: http://www.vestibulandoweb.com.br/biologia/teoria/celula-eucarionte-1-2.jpg
Célula Eucarionte
1. Célula Eucarionte
Estas células possuem um núcleo delimitado por um sistema de membranas (a membrana nuclear ou carioteca), nitidamente separado do citoplasma. Têm um rico sistema de membranas que formam numerosos compartimentos, separando entre si os diversos processos metabólicos que ocorrem na célula. Como modelo de células eucariontes, veremos uma célula animal e uma célula vegetal.

A. A Célula Animal
Descrição: Celula eucarionteComo todas as células, possui uma membrana celular (membrana plasmáticaou plasmalema). Sua espessura é de 7,5 nanômetros, o que a torna visível somente ao microscópio eletrônico, no qual aparece como um sistema de três camadas: duas escuras, eletrodensas, e entre elas uma camada clara. Esta estrutura trilaminar é chamada unidade de membrana.
Sua composição química é lipoproteica, sendo 75% de proteínas e 25% de gorduras. A membrana controla a entrada e saída de substâncias da célula, mantendo quase constante a composição do seu meio interno. Possuipermeabilidade seletiva, permitindo a livre passagem de algumas substâncias e não de outras. Engloba partículas (endocitose) por fagocitose (partículas grandes) ou por pinocitose(partículas pequenas e gotículas).

Descrição: Celula Eucarionte

O citoplasma é constituído por uma substância fundamental amorfa – o hialoplasma ou citosol – que contém água, proteínas, íons, aminoácidos e outras substâncias. A parte proteica pode sofrer modificações reversíveis em sua estrutura, aumentando ou diminuindo sua viscosidade, alternando de gel (mais denso) para sol (mais fluido) ou vice-versa.
Mergulhados no hialoplasma estão os organóides e os grânulos de depósito de substâncias diversas, como glicogênio ou gorduras. Os organóides possuem funções específicas, sendo alguns revestidos por membranas e outros, não.
Descrição: Mitocondria
As mitocôndrias são alongadas ou esféricas, revestidas por dupla membrana lipoproteica. Possuem DNA próprio e capacidade de autoduplicação. Liberam energia de moléculas orgânicas, como a glicose, transferindo-a para moléculas de ATP. A energia do ATP é empregada pelas células na realização de trabalho: síntese de substâncias, movimento, divisão celular, etc. Os processos de oxidação da glicose constituem a respiração celular aeróbica, dependente de oxigênio.

Descrição: Reticulo endoplasmatico
O retículo endoplasmático (RE) é formado por um extenso sistema de túbulos e vesículas revestidas por membrana lipoproteica. As cavidades deste sistema são chamadas cisternas do RE. Algumas partes têm ribossomos aderidos (RE rugoso ou granular, também chamado ergastoplasma) e outras partes não os possuem (RE liso). As funções dos dois tipos são diferentes, e a proporção de cada um depende dos papéis metabólicos da célula. O RE permite a distribuição de substâncias pelo interior da célula. O RE rugoso é sede de intensa síntese de proteínas. O RE liso produz lipídios, e algumas substâncias ligadas a ele podem metabolizar substâncias tóxicas, inativando-as.
Os ribossomos são pequenas partículas formadas por proteínas e por RNA ribossômico. São as organelas responsáveis pela síntese de proteínas.
Descrição: Complexo de Golgi
O complexo de Golgi é constituído por vesículas achatadas ou esféricas, empilhadas e revestidas por membrana lipoproteica. Nas células animais, geralmente está próximo do núcleo. Relaciona-se com a concentração e o armazenamento de substâncias produzidas pelas células e com a transferência destas substâncias para grânulos nos quais serão eliminadas da célula. Participam, portanto, da secreção celular.

Revestidos por membrana lipoproteica, os lisossomos são pequenas vesículas esféricas cheias de enzimas digestivas. Sua função básica é a digestão celular, que envolve dois processos:
1) digestão de partículas alimentares englobadas pela célula (digestão heterofágica);
2) digestão de organóides inativos ou em degeneração (digestão autofágica).

Descrição: Centriolos
Próximo ao núcleo, encontra-se um par de centríolos. Cada um é formado por um cilindro constituído por substância amorfa e microtúbulos. Tem capacidade de autodupli-cação. Participa dadivisão celular.
Em algumas células, observam-se cílios e flagelos vibráteis. Os cílios são pequenos e numerosos, enquanto os flagelos são longos, havendo apenas um ou alguns por célula. Na base dos cílios e flagelos, está o corpúsculo basa, de estrutura idêntica à dos centríolos.

Os peroxissomos ou microcorpos são pequenas vesículas que contêm enzimas oxidativas. Possuem, também, quase toda a catalase da célula, enzima que degrada a água oxigenada.
Descrição: Celula eucarionte
Participam, ainda, da eliminação de outras substâncias tóxicas, como o etanol e o ácido úrico.

Descrição: MicrotubuloOs microtúbulos e os microfilamentos são estruturas filamentares constituídas por proteínas. Encontram-se no interior dos cílios e de flagelos ou dispersos pelo citoplasma. Participam dos movimentos celulares e da manutenção da arquitetura celular, formando o citoesqueleto.

Os depósitos ou inclusões citoplasmáticas diferem dos organóides por não possuírem organização nem sistemas enzimáticos específicos. São depósitos intracelulares de substâncias de reserva (glicogênio ou gordura), de pigmentos (melanina) ou de cristais.

O núcleo, controlador da atividade celular, é bem individualizado e delimitado por uma dupla membrana, a carioteca ou membrana nuclear. Seu interior é ocupado pela cariolinfa, na qual está mergulhado o material genético formado por DNA associado a proteínas, a cromatina. Observa-se, ainda, um corpúsculo denso, esférico, chamado nucléolo.

B. Célula Vegetal
A organização eucariótica da célula vegetal é muito parecida com a da célula animal, apresentando muitas organelas comuns, como mitocôndrias, retículo endoplasmático, complexo de Golgi, ribossomos, entre outras.
A célula vegetal apresenta estruturas típicas, como a membrana celulósica que reveste externamente a célula vegetal, sendo constituída basicamente de celulose.
Uma outra estrutura que caracteriza a célula vegetal é o cloroplasto, organela na qual ocorre a fotossíntese.
Descrição: Cloroplasto
Na verdade, os cloroplastos são, entre outras, organelas que podem ser classificadas como cromoplastos, pois são organelas que possuem pigmentos (substâncias coloridas) que absorvem energia luminosa para a realização da fotossíntese.
Entre os cromoplastos, além do cloroplasto que contém clorofila (pigmento verde), existem os xantoplastos, que contém xantofila (pigmento amarelo), os eritroplastos, que contém a licopeno (pigmento vermelho), e assim por diante.
Quando os plastos não possuem pigmentos coloridos, são chamados deleucoplastos, como os amiloplastos que armazenam amido.
Observe, no esquema da célula vegetal, que o vacúolo é uma organela com dimensões maiores que na célula animal e ocupa grande parte do hialoplasma da célula.
Podemos diferenciar a célula vegetal da célula animal também pela ausência dos centríolos nos vegetais superiores.
Descrição: Celula vegetal
2. Principais diferenças entre célula animal e vegetal
Descrição: Celulas


- DEFINIÇÃO.
* SUBSTÂNCIAS MUTAGÊNICAS:
O CIGARRO É UM EXEMPLO, POIS CONTÉM 400 SUBSTÂNCIAS QUIMICAS. 
·         TODA CELULA EUCARIONTE TEM UM NUCLEO COM MATERIAL GENÉTICO.
      (AS CELULAS EUCARIONTES SURGIRAM HÁ 2 MILHÕES DE ANOS E MEIO).
HETEROTROFICAS = PLANTAS.
HETERO = DIFERENTE
TROFICAS = ALIMENTAÇÃO.
- ALIMENTAM-SE DE OUTROS ORGANISMOS, NÃO TEM RESERVA DE ÁGUA NA CELULA, NÃO TEM CAMADA DE CELULOSE EM VOLTA.
HETEROTROFICA = É A MENOR UNIDADE MORFOLOGICA E FUNCIONAL  DOS SERES VIVOS.
- EUCARIONTE (DNA DO NUCLEO), POSSUI O MATERIAL GENÉTICO (DNA), ISOLADO DO CITOPLASMA EM COMPARTIMENTO ENVOLTO POR MEMBRANA.
                                          FUNÇÕES:
O QUE A CELULA TEM QUE PRODUZIR PARA SE MANTER VIVA.
                                         ENERGIA:
- PRODUÇÃO DE ENERGIA (CAMADA DE ENERGIA QUIMICA).
- ORGANELA MITOCONDREA
- A CELULA ACUMULA ENERGIA PARA O MOMENTO NECESSÁRIO.
- MOLECULA ENERGIA DOS SERES VIVOS E DAS CELULAS.
- ATP = (ADENONINA TRI-FOSFATO).
- A ENERGIA DA MOLECULA SE ENCONTRA NA LIGAÇÃO, QUANTO MAIS ATP MAIS ENERGIA.
- TRI FOSFATO -  P -   P  -  P - .
                                                  MACROFAGO:
- O ATP VIA ADP QUE É A ADENONINA.
- CITOPLASMA ESTA NA MOLECULA / A ENERGIA QUIMICA.
- PARA MONTAR ATP PRECISA TER REAÇÃO DE ENERGIA.
- GLICOSE = C6 H12 O6 } MOLECULA.
- MENBRANA PLASMATICA-CANAL PROTEICO  A GLICOSE PASSA POR UM CANAL E ENTRA ATRAVÉS DE UM ATIVADOR.
                          
                                     PROCESSO DE RESPIRAÇÃO CELULAR :
Descrição: mitocôndria - respiração celular Mitocôndria: responsável pela respiração celular.
Indrodução 
Toda a atividade da célula requer energia, e esta, é obtida através da mitocôndria. Esta organela é a responsável pela produção de energia através de um processo conhecido como respiração celular.
Como ocorre 
Para obter energia, a célula obrigatoriamente precisa de glicose. Isto ocorre da seguinte forma: a mitocôndria quebra a molécula de glicose introduzindo oxigênio no carbono, capturando, assim, sua energia. Após este processo, sobrará apenas o gás carbônico, que sairá na expiração.

No caso das plantas, a glicose é produzida através da 
fotossíntese. Neste processo, a planta recebe gás carbônico do ar e energia do sol para fazer esta composição química. A medida que ela produz glicose, elimina oxigênio.

A mitocôndria faz exatamente o contrário do que ocorre na fotossíntese, ou seja, ela retira sua energia através da quebra da glicose e libera gás carbônico.

Em química orgânica sabemos que a ligação de carbono com carbono é energética, assim, em busca deste combustível indispensável às suas atividades, a mitocôndria o retirará dos átomos de carbono.

É importante sabermos que para se extrair energia das substâncias, é necessária a presença de oxigênio, e é desta forma (introduzindo oxigênio no carbono) que a mitocôndria retira a ligação energética dos átomos de carbono.

Curiosidade
Você sabia que 93 a 97% de nosso corpo é composto por oxigênio, hidrogênio, nitrogênio e carbono?

- CICLO DE K
- CADEIA RESPIRATÓRIA
- A GLICOSE COMBINA COM OXIGÊNIO, RESPIRANDO GÁS CARBONO+ÁGUA+ATP.
                                       SINTESE DAS PROTEINAS
- AS PROTEINAS TEM PAPEIS IMPORTANTES COMO ESTRUTURAL, QUERATINA, COLAGENO (MANTÉM A FIRMEZA DA PELE).ACOBINA.
                                              ESTRUTURAL
- TRANSPORTADORA = EX: POSSIBILITA QUE A GLICOSE PASSSE DO MEIO EXTERNO PARA O INTERNO.
PROTEINAS CONTRATEIS
- ENZIMAS = (DIGERE AMIDO NA BOCA)
ENZIMAS


CONCEITOS GERAIS E FUNÇÕES

            As enzimas são proteínas especializadas na catálise de reações biológicas. Elas estão entre as biomoléculas mais notáveis devido a sua extraordinária especificidade e poder catalítico, que são muito superiores aos dos catalisadores produzidos pelo homem. Praticamente todas as reações que caracterizam o metabolismo celular são catalisadas por enzimas.
            Como catalisadores celulares extremamente poderosos, as enzimas aceleram a velocidade de uma reação, sem no entanto participar dela como reagente ou produto.
            As enzimas atuam ainda como reguladoras deste conjunto complexo de reações.
            As enzimas são, portanto, consideradas as unidades funcionais do metabolismo celular.


NOMENCLATURA DAS ENZIMAS

            Existem 3 métodos para nomenclatura enzimática:
            - Nome Recomendado:  Mais curto e utilizado no dia a dia de quem trabalha com enzimas; Utiliza o sufixo "ase" para caracterizar a enzima. Exs: Urease, Hexoquinase, Peptidase, etc.
            - Nome Sistemático: Mais complexo, nos dá informações precisas sobre a função metabólica da enzima. Ex: ATP-Glicose-Fosfo-Transferase
            - Nome Usual : Consagrados pelo uso; Exs: Tripsina, Pepsina, Ptialina.


CLASSIFICAÇÃO DAS ENZIMAS

            As enzimas podem ser classificadas de acordo com vários critérios. O mais importante foi estabelecido pela União Internacional de Bioquímica (IUB), e estabelece 6 classes:
            - Oxidorredutases: São enzimas que catalisam reações de transferência de elétrons, ou seja: reações de oxi-redução. São as Desidrogenases e as Oxidases.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/enzcla1.gif
            Se uma molécula se reduz, tem que haver outra que se oxide.
            - Transferases : Enzimas que catalisam reações de transferência de grupamentos funcionais como grupos amina, fosfato, acil, carboxil, etc. Como exemplo temos as Quinases e as Transaminases.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/enzcla2.gif
            - Hidrolases : Catalisam reações de hidrólise de ligação covalente. Ex: As peptidades.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/enzcla3.gif
            - Liases: Catalisam a quebra de ligações covalentes e a remoção de moléculas de água, amônia e gás carbônico. As Dehidratases e as Descarboxilases são bons exemplos.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/enzcla4.gif
            - Isomerases: Catalisam reações de interconversão entre isômeros ópticos ou geométricos. As Epimerases são exemplos.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/enzcla5.gif
            - Ligases: Catalisam reações de formação e novas moléculas a partir da ligação entre duas já existentes, sempre às custas de energia (ATP). São as Sintetases.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/enzcla6.gif


PROPRIEDADES DAS ENZIMAS

            São catalisadores biológicos extremamente eficientes e aceleram em média 109 a 1012 vezes a velocidade da reação, transformando de 100 a 1000 moléculas de substrato em produto por minuto de reação.
            Atuam em concentrações muito baixas e em condições suaves de temperatura e pH.
            Possuem todas as características das proteínas. Podem ter sua atividade regulada. Estão quase sempre dentro da célula, e compartimentalizadas.


COFATORES ENZIMÁTICOS E COENZIMAS

            Cofatores são pequenas moléculas orgânicas ou inorgânicas que podem ser necessárias para a função de uma enzima.  Estes cofatores não estão ligados permanentemente à molécula da enzima mas, na ausência deles, a enzima é inativa.
            A fração protéica de uma enzima, na ausência do seu cofator, é chamada de apoenzima.
            Enzima + Cofator, chamamos de holoenzima.

Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/ezcofactor.gif
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/ezcoenzima.gif

            Coenzimas são compostos orgânicos, quase sempre derivados de vitaminas, que atuam em conjunto com as enzimas. Podem atuar segundo 3 modelos:
            - Ligando-se à enzima com afinidade semelhante à do substrato.
            - Ligando-se covalentemente em local próximo ou no próprio sítio catalítico da apoenzima.
            - Atuando de maneira intermediária aos dois extremos acima citados.


ESPECIFICIDADE SUBSTRATO \ ENZIMA: O SÍTIO ATIVO

            As enzimas são muito específicas para os seus substratos. Esta especificidade pode ser relativa a apenas um substrato ou a vários substratos ao mesmo tempo.
            Esta especificidade se deve à existência, na superfície da enzima de um local denominado sítio de ligação do substrato. O sítio de ligação do substrato de uma enzima é dado por um arranjo tridimensional especial dos aminoácidos de uma determinada região da molécula, geralmente complementar à molécula do substrato, e ideal espacial e eletricamente para a ligação do mesmo. O sítio de ligação do substrato é capaz de reconhecer inclusive isômeros óticos "D" e "L" de um mesmo composto. Este sítio pode conter um segundo sítio, chamado sítio catalítico ou sítio ativo, ou estar próximo dele; é neste sítio ativo que ocorre a reação enzimática.
Descrição: esquema de la acción de una enzima
            Composto que é transformado por uma enzima que se une a uma zona ativa, onde se produz ima catálise, que no exemplo conduz a uma formação de produtos.
Descrição: centro activo de una enzima
            A zona sombreada são os aminoácidos desta enzima (proteína) que configuram, neste caso, o centro ativo da enzima.

            Alguns modelos procuram explicar a especificidade substrato/enzima:
            - Modelo Chave/Fechadura que prevê um encaixe perfeito do substrato no sítio de ligação, que seria rígido como uma fechadura. No exemplo da figura abaixo, uma determinada região da proteína - o módulo SH2 - liga-se à tirosina fosfatada, que se adapta ao sítio ativo da enzima tal como uma chave faz a sua fechadura.
Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/celula_dominio_sh2.jpg 

Descrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/proteina_enzima.gifDescrição: http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/trabalhos_pos2003/const_microorg/proteina_enzima2.gif

          
              - Modelo do Ajuste Induzido que prevê um sítio de ligação não totalmente pré-formado, mas sim moldável à molécula do substrato; a enzima se ajustaria à molécula do substrato na sua presença.
            - Evidências experimentais sugerem um terceiro modelo que combina o ajuste induzido a uma "torção" da molécula do substrato, que o "ativaria" e o prepararia para a sua transformação em produto.


MECANISMO GERAL DE CATÁLISE

            As enzimas aceleram a velocidade de uma reação por diminuir a energia livre de ativação da mesma, sem alterar a termodinâmica da reação, ou seja: A energia dos reagentes e produtos da reação enzimática e de sua equivalente não enzimática são idênticas.
            Para se superar a energia de ativação de uma reação, passa-se pela formação de um estado intermediário chamado "Estado de Transição", sempre um composto instável e de alta energia, representado por "Ts", ligado com altíssima afinidade ao sítio catalítico. Nas reações enzimáticas, este composto de transição "Ts" não pode ser isolado ou mesmo considerado um intermediário, uma vez que não é liberado para o meio de reação; sua formação ocorre no sítio catalítico da enzima!! Como a afinidade do "Ts" ao sítio catalítico é muito maior que a afinidade do substrato com o mesmo, a pequena quantidade de moléculas em "Ts" será rapidamente convertida em produto. Assim, todo o fator que leva a um aumento do número de moléculas em "Ts" aumenta a velocidade da reação.
            São 4 os mecanismos principais através dos quais as enzimas aceleram uma reação, aumentando a formação de moléculas de substrato em "Ts":
            - Catálise Ácido-Base  que ocorre com a participação de aminoácidos com cadeias laterais ionizáveis, capazes de doar ou liberar prótons durante a catálise.
            - Torção de Substrato, que depende da torção do substrato induzida pela ligação do mesmo com o sítio de ligação da enzima, alcançando o estado de transição e estimulando sua conversão em produto.
            - Catálise Covalente que resulta do ataque nucleofílico ou eletrofílico de um radical do sítio catalítico sobre o substrato, ligando-o covalentemente à enzima e induzindo a sua transformação em produto. Envolve com freqüência a participação de coenzimas.
            - Efeito de Diminuição da Entropia. As enzimas ajudam no posicionamento e na definição da estequiometria correta da reação, facilitando os mecanismos anteriores.


CINÉTICA ENZIMÁTICA

            É a parte da enzimologia que estuda a velocidade das reações enzimáticas, e os atores que influenciam nesta velocidade. A cinética de uma enzima é estudada avaliando-se a quantidade de produto formado ou a quantidade de substrato consumido por unidade de tempo de reação.
            Uma reação enzimática pode ser expressa pela seguinte equação:
E + S  <==> [ES]  ==> E + P
            O complexo enzima/substrato (ES) tem uma energia de ativação ligeiramente menor que a do substrato isolado, e a sua formação leva ao aparecimento do estado de transição "Ts".
            A formação de "P" a partir de ES é a etapa limitante da velocidade da reação.
            A velocidade de uma reação enzimática depende das concentrações de enzima e de substrato.
            
            Equação de Michaelis-Menten:
            Michaelis e Menten foram 2 pesquisadoras que propuseram o modelo acima citado como modelo de reação enzimática para apenas um substrato. A partir deste modelo, estas pesquisadoras criaram uma equação, que nos permite demonstrar como a velocidade de uma reação varia com a variação da concentração do substrato. Esta equação pode ser expressa graficamente, e representa o efeito da concentração de substrato sobre a velocidade de reação enzimática.
            O Km de um substrato para uma enzima específica é característico, e nos fornece um parâmetro de especificidade deste substrato em relação à enzima. Quanto menor o Km, maior a especificidade, e vice-versa.


FATORES EXTERNOS QUE INFLUENCIAM NA VELOCIDADE DE UMA REAÇÃO ENZIMÁTICA

            São eles:
            - Temperatura: Quanto maior a temperatura, maior a velocidade da reação, até se atingir a temperatura ótima; a partir dela, a atividade volta a diminuir, por desnaturação da molécula.
 
            - pH: Idem à temperatura; existe um pH ótimo, onde a distribuição de cargas elétricas da molécula da enzima e, em especial do sítio catalítico, é ideal para a catálise.


INIBIÇÃO ENZIMÁTICA

            Os inibidores enzimáticos são compostos que podem diminuir a atividade de uma enzima. A inibição enzimática pode ser reversível ou irreversível;
            Existem 2 tipos de inibição enzimática reversível:
            - Inibição Enzimática Reversível Competitiva:


Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Quando o inibidor se liga reversivelmente ao mesmo sítio de ligação do substrato;
Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
O efeito é revertido aumentando-se a concentração de substrato
Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Este tipo de inibição depende das concentrações de substrato e de inibidor.
            - Inibição Enzimática Reversível Não-Competitiva:


Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Quando o inibidor liga-se reversivelmente à enzima em um sítio próprio de ligação, podendo estar ligado à mesma ao mesmo tempo que o substrato;
Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Este tipo de inibição depende apenas da concentração do inibidor.
            Na inibição enzimática irreversível, há modificação covalente e definitiva no sítio de ligação ou no sítio catalítico da enzima.



REGULAÇÃO ENZIMÁTICA

            Algumas enzimas podem ter suas atividades reguladas, atuando assim como moduladoras do metabolismo celular. Esta modulação é essencial na coordenação dos inúmeros processos metabólicos pela célula.
            Além dos mecanismos já citados de modulação de atividade enzimática - por variação da concentração do substrato, ou por inibição enzimática, por exemplo - existem 2 modelos de regulação enzimática mais conhecidos:
            - Modulação Alostérica 


Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Ocorre nas enzimas que possuem um sítio de modulação, ou alostérico, onde se liga de forma não-covalente um modulador alostérico que pode ser positivo (ativa a enzima) ou negativo (inibe a enzima).
Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
A ligação do modulador induz a modificações conformacionais na estrutura espacial da enzima, modificando a afinidade desta para com os seus substratos;
Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Um modelo muito comum de regulação alostérica é a inibição por "feed-back", onde o próprio produto da reação atua como modulador da enzima que a catalisa.
            - Modulação Covalente:



Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
Ocorre quando há modificação covalente da molécula da enzima, com conversão entre formas ativa/inativa.
Descrição: http://www.enq.ufsc.br/labs/probio/_themes/blueprnt/blubul3a.gif
O processo ocorre principalmente por adição/remoção de grupamentos fosfato de resíduos específicos de serina.

- PROTEINAS QUE POSSIBILITAM REAÇÃO QUIMICA.
- TODOS ESTES FATORES SÃO DETERMINADOS GENETICAMENTE PELOS GENES.
- RNA MENSAGEIRO = ELE LEVA A FORMA DO GENE.
- QUAIS AS ORGANELAS RESPONSAVEIS PELA PRODUÇÃO DE PROTEINAS.
                                  ORGANELAS
- RIBOSSOMOS : (NA BIOQUIMICA, NA BIOLOGIA)
 - LIVRES OU POLIRRIBOSSOMOS.
- NO RETICULO ENDOPLASMATICO GRANULAR = RIBOSSOMO LÊ A RECEITA – PROTEINA – COMPLEXO DE GOLDI.
O complexo de Golgi é uma organela encontrada em quase todas as células eucarióticas. O nome provém de Camilo Golgi, que foi quem o identificou. É formado por sacos achatados e vesículas, sua função primordial é o processamento de pilas ribossomaticas e a sua distribuição por entre essas vesículas. Funciona, portanto, como uma espécie de sistema central de distribuição na célula, atua como centro de armazenamento, transformação, empacotamento e remessa de substâncias na célula. É responsável também pela formação dos lisossomos, da lamela média dos vegetais e do acrossomo do espermatozóide, do glicocalix e está ligado à sintese de polissacarídeos. Acredita-se, ainda, que o complexo de Golgi seja responsável por alguns processos pós traducionais, tais como adicionar sinalizadores às proteínas, que as direcionam para os locais da célula onde actuarão.

A maior parte das vesículas transportadoras que saem do retículo endoplasmático, e em particular do retículo endoplasmático rugoso (RER), são transportadas até ao complexo de Golgi, onde são modificadas, ordenadas e enviadas na direcção dos seus destinos finais. O complexo de Golgi está presente na maior parte das células eucarióticas, mas tende a ser mais proeminente nas células de órgãos responsáveis pela secreção de certas substâncias, tais como: Pâncreas, Hipófise, Tireóide, etc.

Fonte(s):

www.infoescola.com/biologia/complexo-de-… 
www.portalsaofrancisco.com.br/alfa/cit… - 14k -
- HORMÔNIO –
- GRANULOS DE SECREÇÃO – ÚTIL (SUBSTÂNCIA QUE VAI SAIR DA CELULA)
- EXCREÇÃO = RESIDUO QUE É LANÇADO PELA CELULA (PRODUTO TOXICO).
- DESCREVER O PROCESSO DE FORMAÇÃO DA PROTEINA!
- DESCREVER O PROCESSO DE SINTESE DAS PROTEINAS E O PAPEL DAS ORGANELAS.
- DEGRADAÇÃO DE SUBSTÂNCIAS
·         LISOSSOMOS = DEGRADAÇÃO DE PROTEINAS
SUBSTÂNCIAS TOXICAS.

Lisossomos
O que é lissossomo, funções principais, origem, organela do citoplasma, biologia celular, citologia, enzimas digestivas, autofagia, renovação celular
Descrição: imagem de um lisossomo Lisossomos: importante função no processo de digestão intracelular (imagem de um lisossomo ampliada em microscópio)

O que são 
Lisossomos são organelas presentes no citoplasma da grande maioria das células eucariontes. No interior dos lisossomos podemos encontrar grande quantidade de enzimas digestivas.
Onde são formados
Os lisossomos são formados no Complexo de Golgi (outra importante organela presente no citoplasma).
Funções dos lisossomos:
- Fazer a degradação e digestão de partículas originárias do meio exterior às células;
- Reciclar (função de renovação celular) outras organelas celulares que estão envelhecidas. Este processo é conhecido como autofagia.
Enzimas digestivas dos lisossomos
As enzimas digestivas presentes em grande quantidade no interior dos lisossomos, são originadas no retículo endoplasmático rugoso (outra organela presente no citoplasma).
·         PEROXISSOMOS = DEGRADAÇÃO DE RESIDUOS TOXICOS, PEROXIDOS DE HIDROGENEO. (ÁGUA OXIGENADA) (CH2 O2) LIPIDEOS DA CADEIA.

OBS: FILME “OLEO DE CLORETO”.

·         SINTESE DE LIPIDEOS

- ESTRUTURAL -  GORDURA CORPORAL LOCALIZADO EM LUGARES ESTRATEGICOS NÃO DEGRADADOS.
- MANUTENÇÃO DA TEMPERATURA / RESERVA ENERGETICA.
·         COORDENAÇÃO E CARACTERIZAÇÃO CELULAR.
- ELA É FEITA PELO DNA DO NUCLEO.
- DNA NUCLEAR – (CROMATINA) A ORGANELA QUE É O NUCLEO.
CARIOTELA
- HETEROCROMATINA –DNA NÃO ATIVO.
A heterocromatina corresponde à cromatina (conteúdo nuclear de células eucarióticas) que se encontra enrolada mais densamente, nas células em interfase (quando a célula não está se dividindo).
Heterocromatina é a parte da cromatina condensada,ou seja, inactiva.

Quando os cromómeros são tratados com substâncias químicas que reagem com o DNA, como o corante de Feulgen, são reveladas visualmente regiões distintas com características de coloração diferentes. As regiões densamente coradas são chamadas de heterocromatina, e as regiões pouco coradas são chamadas de eucromatina. A distinção reflecte o grau de compactação ou helicoidização do DNA no cromossoma. A heterocromatina pode ser constitutiva ou facultativa. O tipo constitutivo é uma característica permanente de um local cromossómico específico como o nome sugere, é às vezes, mas nem sempre, encontrado num local cromossómico em particular. Os padrões de heterocromatina e eucromatina ao longo de um cromossoma são bons marcadores citogenéticos.

Apresenta o material genético mais compactado e aparece com maior frequência no núcleo denso (parte mais escura da cromatina) e existe em maior quantidade em células menos activas.

Cromatina

Em biologia, chama-se cromatina ao complexo de DNA e proteínas (que juntas denomina-se cromossoma) que se encontra dentro do núcleo celular nas células eucarióticas. Os ácidos nucléicos encontram-se geralmente na forma de dupla-hélice. As principais proteínas da cromatina são as histonas. As histonas H2A, H2B, H3 e H4 unem-se, formando um octâmero denominado nucleossoma, enquanto que a histona H1 une os nucleossomas adjacentes, "empacotando-os".

Numa célula eucariótica, quase todo o DNA está compactado na cromatina. O DNA é "empacotado" na cromatina para diminuir o tamanho da molécula (de DNA), e para permitir maior controle por parte da célula de tais genes. Grande parte da cromatina é localizada na periferia do núcleo, possivelmente pelo fato de uma das principais proteínas associadas com a heterocromatina ligar-se a uma proteína da membrana nuclear interna.

Conhecem-se dois tipos de cromatina:

Eucromatina, que consiste em DNA ativo, ou seja, que pode-se expressar como proteinas e enzimas. 
Heterocromatina, que consiste em DNA inativo e que parece ter funções estruturais durante o ciclo celular. Podem ainda distinguir-se dois tipos de heterocromatina: 
Heterocromatina constitutiva, que nunca se expressa como proteínas e que se encontra localizada à volta do centrómero (contem geralmente sequências repetitivas); e 
Heterocromatina facultativa, que, por vezes, é transcrita em outros tipos celulares, consequentemente a sua quantidade varia dependendo da atividade transcricional da célula.
PORO
EUCROMATINA = COR-SUBSTÂNCIA QUE FICA COLORIDA.
DNA ATIVO POUCO DENSO É MAIS CLARO.
·         LIPIDEOS;
·         A GORDURA CONTROLA A TEMPERATURA CORPORAL , A CAMADA DE GORDURA VOCÊ PODE AUMENTAR OU DIMINUIR;
·         GRANULADA SUPRA RENAL;
HORMONIOS-LIPIDEOS;
TESTOSTERONA  ;
ESTROGÊNEO;
PROGESTENIO.

- ORGANELA = RETICULO – (LIPIDEOS) RETICULO ENDOPLASMATICO LISO.
- GENE É RESPONSAVEL PELA PROTEINA ELE NÃO FAZ O LIPIDEO.
- PESQUISAR CELULA ATRAVES DE MICROSCOPIO OPTICO E ELETRONICO.
·         HEPATOCITO=CELULA DO FIGADO.
·         MACROFAGO
·         NUCLEO-CLARO-CELULA ATIVA-MITOCONDRIA (RESPIRANDO E PRODUZINDO ENERGIA) – PEROXISSOMOS (DESENTOXICA O ORGANISMO).

- HEPACITO = NECLEOLO – NUCLEO – CITOPLASMA – CELULAS DO FIGADO – GLICOGENIO – MACROFAGO CELULA DE DEFESA.
- GLICOGENIO – O FIGADO ARMAZENA GLICOSE (RESERVA DE GLICOSE) QUANDO ABAIXA  A INSULINA ENTRA EM CONTATO LIBERANDO A GLICOSE.
- MITOCONDREA – RESPIRANDO E PRODUZINDO ENERGIA ATP.
- PEROXISSOMOS – DESENTOXICA O ORGANISMO.
- MACROFAGO LIBERA NOS VAZOS?
- ESTUDOS DE CELULAS RELACIONADAS A PAREDE DO INTESTINO.
- ORGANELA SEMPRE TEM MENBRANA
- É PRODUZIDO PROTEINA DENTRO DA VIZICULA PASSA E VAI P/ GOLDI. (COMPLEXO DE GOLDI).
- GRANULOS DE SECREÇAO – (C/MOLECULAS DE CARBOIDRATO).
·         PROTEINA – ELA É DIGERIDA E QUEBRADA NO ESTOMAGO E VAI ATÉ O INTESTINO E ACABA SENDO DESTRIBUIDA AOS SETORES DE ABSORÇÃO. (EX: CARNE).
·         CADA CELULA TEM UMA FUNÇÃO ESPECIFICA.
- RETICULO PLASMATICO LISO – PRODUZ LIPIDEO.
- AUTOFAGIO É QUANDO O LISOSSOMOS DESTROI AS PROPRIAS ORGANELAS MORTAS, PARA NÃO INTOXICAR A CELULA.
- A MITOCONDREA TEM O PROPRIO DNA. SO A MITOCONDREA TEM AUTONOMIA PARA DESENVOLVER.
- A MITOCONDREA VEM DA MÃE. Ex: espermatozoide. ( A MITOCONDREA DA MULHER QUE É USADA A DO HOMEM FICA).
                                   FORMAÇÃO DE PROTEINAS
·         RETICULO ENDOPLASMATICO GRANULADO – ELE NÃO TEM A FORMULA PARA FAZER A PROTEINA.
·         O RIBOSSOMO – É FORMADO POR DUAS PARTES ONDE ELE LÊ A RECEITA, A ORDEM QUE OS AMINOACIDOS SÃO FORMADOS NA PROTEINA.
·         LISOSSOMOS POSSUEM ENZIMAS DIGESTIVAS.
·         GRANULO DE SECREÇÃO PRODUZ COISAS QUE SERÃO LANÇADAS PARA FORA DA CELULA.


                                UTILIDADE DO LISOSSOMOS
- BACTERIA E LIQUIDOS EXTERNOS NÃO PODEM FICAR PARA SEMPRE, ACABA SENDO DEGRADADA PELO LISOSSOMOS.
·         PROTEINAS RECEPTORAS DE MENBRANA.